这个小网站的功能便是把很长的地址转化为一个短地址,起到方便转发的作用。
所用到的技术栈:Python+Flask+html+MySQL。
实例:输入一长串地址如下
点击生成,得到的输出如下:
点击短链接立刻成功转到长链接对应的页面。
这个作业是一个典型的Flask
框架,我也采用的是经典的布局:
app.py
是主程序,里面是获取长链接页面和生成短链接页面的相关代码,通过GET和POST的方法实现前后端的联系;config.py
是Flask
项目的配置文件,主要是数据库的连接信息;models.py
是自己撰写的类,里面设计了url在数据库中的表单形式,此外还设计了两个获取数据的方法;exts.py
专门用来存放SQLAlchemy
的实例,这样做的原因见下文。index.html
是基于bootstrap的app页面,简洁美观。大致的思路便是通过将网页的序号(在数据库里的序号)通过62进制函数形成一一对应并且缩短长度,再在本网页设置重定向即可。运作流程可以概括为:用户输入长链接->数据库存储长链接并且生成序号->(点击短链接时)通过短链接后缀找到序号,找到数据库中对应的长链接->跳转。
models.py
from exts import db
class URLModel(db.Model):
#数据表信息设置
= "urls"
__tablename__ id = db.Column(db.Integer, nullable=False, autoincrement=True, primary_key=True)
= db.Column(db.String(1000), nullable=False)
url #通过id找到对应url
def find_url(self, id):
= URLModel.query.filter(URLModel.id == id).first().url
url return url
#获取当前最后一个数据(即刚刚存储的数据)的id
def find_id(self):
return URLModel.query.order_by(URLModel.id.desc()).first().id
这个类先设计了url在数据库中的表单形式:id是url对应的序号,为整型变量,是整个table的主键并且有自增;url为字符串变量,存放用户输入的长url。Flask-SQLAlchemy
提供一个名为 Model 的类,用于作为声明模型时的 declarative 基类。在这之后我设计了两个简单的方法,分别用数据库的语句查询到相应的信息,从而简化了主程序的代码。find_url
通过输入id返回对应的url,find_id
的作用是查询数据表最后一行对应的id。这个类的设计至关重要,因为主程序绝大多数功能都要调用这个类。
(这个问题到现在还没解决)Python的虚拟环境问题。这个app分别在pycharm terminal跑和在进入虚拟环境的cmd上跑,用的包位置不一样。后面就统一在terminal里面跑得了。
(最坑爹的bug)
The current Flask app is not registered with this 'SQLAlchemy' instance.
为了解决这个报错,我先改变了代码的结构,新增了exts.py
专门用来存放SQLAlchemy
的实例,这样比较符合Flask
的文件规范,也可以有效防止同时构建多个实例导致报错。然而报错仍然存在。搞了好几个小时才发现app.py
中的初始化语句app = Flask(__name__)
写了两遍!系统会觉得我创建了重复的实例就报错了。
(各种小bug)
bases.py
而我一开始下载的是bases
。正确的语句是pip3 install bases.py
。(难点)其实每个模块单独来看真的不难,对我来说最难的部分就是这个项目技术栈之间的联系,比如说Flask
和MySQL
的联系;app与网页的联系;表单和数据库的联系等等。这往往是最容易出bug的地方。
作者:Dongzhuo Chen
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#define MAXSIZE 100
char valid_op[] = "+-*/";//定义合法的运算符数组,方便调用相应运算功能
char opStack[MAXSIZE];//定义运算符栈,用于存放暂时不用的运算符
int opTop = -1;
double numStack[MAXSIZE];//定义数栈,用于存放暂时不用的数
int numTop = -1;
void push_op(char op);
char pop_op();
void push_num(double num);
double pop_num();
int read();//定义读入函数
double num_temp;//暂时存放读到的数字
char op_temp;//暂时存放独到的运算符
int is_num, is_op;
//定义函数指针,调用相应运算功能
double add(double x, double y);
double sub(double x, double y);
double mul(double x, double y);
double divid(double x, double y);
double (*func[])(double x, double y) = {add, sub, mul, divid};
//定义优先级函数,用于判断左侧运算符与右侧运算符优先级
int prio_l(char op);
int prio_r(char op);
//定义储存表达式的数组
char s[MAXSIZE];
//定义pt变量,用于指示目前表达式读取进度
int pt = 0;
double num1, num2;
char op0;
int main()
{
int i, op_loc;
("请输入一个表达式(目前仅支持正数的加减乘除,可以使用括号),以#开头,并以#结束:\n");
printf("%s", s);
scanf();
read(op_temp);//读到第一个“#”,并将其存入运算符栈
push_op();
readwhile(true)
{
if(is_num == 1)//如果读到的是数字,将其存入数栈
{
(num_temp);
push_num}
if(is_op == 1)//如果读到的是运算符,判断其与运算符栈顶符号的优先级
{
if(prio_l(opStack[opTop]) < prio_r(op_temp))//若读到的运算符优先级较高,将其存入运算符栈
{
(op_temp);
push_op}
else if(prio_l(opStack[opTop]) == prio_r(op_temp))//若读到的运算符优先级相等,说明左右括号相遇,去括号
{
();
pop_op}
else if(prio_l(opStack[opTop]) > prio_r(op_temp))//若读到的运算符优先级较低,则先进行运算符栈顶的运算符运算
{
= pop_num();
num2 = pop_num();
num1 = pop_op();
op0 for(i = 0; i < 4; i ++)
{
if(op0 == valid_op[i])
{
= i;
op_loc break;
}
}
= (*func[op_loc])(num1,num2);
num_temp (num_temp);//将得到的结果存入数栈中
push_num--;
pt }
}
if(is_num==0 && op_temp=='#' && opStack[opTop]=='#')//两个#相遇时标志着运算结束
{
break;
}
();//读取下一个字符
read}
("这个表达式的结果是%f\n", numStack[numTop]);
printf("pause");
systemreturn 0;
}
int read()
{
if(s[pt] >= '0' && s[pt] <= '9')//如果读到的是数字 ,把读到的数字字符转换成对应的数值
{
= 1;
is_num = 0;
is_op double a = 0;
int t = 10;
while(s[pt] >= '0' && s[pt] <= '9')//处理小数点以前的位数
{
= 10 * a + s[pt] - '0';
a ++;
pt }
if(s[pt] == '.')
{
++;
pt }
while(s[pt] >= '0' && s[pt] <= '9')//处理小数点以后的位数
{
= a + (s[pt] - '0')*1.0/t;
a ++;
pt *= 10;
t }
= a;
num_temp return 0;
}
else//如果读到的是运算符
{
= 1;
is_op = 0;
is_num = s[pt];
op_temp ++;
pt return 0;
}
}
void push_op(char op)
{
if(opTop == MAXSIZE-1)
{
("operator stack is full!\n");
printf(0);
assert}
else
{
++;
opTop [opTop]=op;
opStack}
}
char pop_op()
{
char op;
if(opTop == -1)
{
("operator stack is empty!\n");
printf(0);
assert}
else
{
= opStack[opTop];
op --;
opTop }
return op;
}
void push_num(double num)
{
if(numTop == MAXSIZE)
{
("number stack is full!\n");
printf(0);
assert}
else
{
++;
numTop [numTop]=num;
numStack}
}
double pop_num()
{
double num;
if(numTop == -1)
{
("number stack is empty!\n");
printf(0);
assert}
else
{
= numStack[numTop];
num --;
numTop }
return num;
}
int prio_l(char op)
{
int prio;
switch(op)
{
case'+':
case'-':
= 4;
prio break;
case'#':
= 0;
prio break;
case'*':
case'/':
= 6;
prio break;
case'(':
= 2;
prio break;
case')':
= 7;
prio break;
}
return prio;
}
int prio_r(char op)
{
int prio;
switch(op)
{
case'+':
case'-':
= 3;
prio break;
case'#':
= 0;
prio break;
case'*':
case'/':
= 5;
prio break;
case'(':
= 7;
prio break;
case')':
= 2;
prio break;
}
return prio;
}
double add(double x, double y)
{
double ret = 0;
= x + y;
ret return ret;
}
double sub(double x, double y)
{
double ret = 0;
= x - y;
retreturn ret;
}
double mul(double x, double y)
{
double ret = 0;
= x * y;
ret return ret;
}
double divid(double x, double y)
{
double ret = 0;
= x / y;
retreturn ret;
}