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Teacher’s Corner

Understanding Convergence Concepts: A Visual-Minded and
Graphical Simulation-Based Approach

Pierre LAFAYE DE MICHEAUX and Benoit LIQUET

This article describes the difficult concepts of convergence in
probability, convergence almost surely, convergence in law, and
convergence in rth mean using a visual-minded and graphical
simulation-based approach. For this purpose, each probability
of events is approximated by a frequency. An R package that
reproduces all of the experiments cited in this article is available
in CRAN. See the online Supplement for details.

KEY WORDS: Convergence almost surely; Convergence in
law; Convergence in probability; Convergence in rth mean; Dy-
namic graphics; Monte Carlo simulation; R language; Visual-
ization.

1. INTRODUCTION

Most departments of statistics teach at least one course on the
difficult concepts of convergence in probability (P ), almost sure
convergence (a.s.), convergence in law (L), and convergence in
r th mean (r) at the graduate level (see Sethuraman 1995). In-
deed, as pointed out by Bryce et al. (2001), “statistical theory is
an important part of the curriculum, and is particularly impor-
tant for students headed for graduate school.” Such knowledge
is prescribed by learned statistics societies (e.g., the Accredi-
tation of Statisticians by the Statistical Society of Canada and
Curriculum Guidelines for Undergraduate Programs in Statisti-
cal Science by the American Statistical Association). The main
textbooks (e.g., Chung 1974; Billingsley 1986; Ferguson 1996;
Lehmann 2001; Serfling 2002) devote about 15 pages to defin-
ing these convergence concepts and their interrelations. Very
often, these concepts are provided as definitions, and students
are exposed only to some basic properties and to the universal
implications displayed in Figure 1.

The aim of this article is to clarify these convergence con-
cepts for master’s students in mathematics and statistics, and
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Figure 1. Universally valid implications of the four classical modes
of convergence. (See Ferguson 1996 for proofs.)

also to provide software useful for learning these concepts.
Each convergence notion provides an essential foundation for
further work. For example, convergence in law is used to
obtain asymptotic confidence intervals and hypothesis tests
using the central limit theorem; convergence in probability
is used to obtain the limiting distribution of the Z test re-
placing an unknown variance with its estimate (through Slut-
sky’s theorem); quadratic mean convergence is used to ob-
tain a mean squared error for point estimators; and almost
sure convergence is a natural extension of deterministic uni-
form convergence. To explain these modes of convergence, we
could follow Bryce et al.’s (2001) advice: “A modern statisti-
cal theory course might, for example, include more work on
computer intensive methods.” Dunn (1999) and Marasinghe et
al. (1996) proposed interactive tools for understanding con-
vergence in law. Mills (2002) proposed a review of statisti-
cal teaching based on simulation methods, and Chance and
Rossman (2006) have written a book on this subject. In Sec-
tion 2 we first define the convergence concepts and show how
to visualize them and help form relevant mental images. We
then use a graphical simulation-based approach to illustrate
this perspective and to investigate some modes of convergence
in practical situations. In Section 3 we point out subtler dis-
tinctions among the various modes through examples. We il-
lustrate these differences through exercises and solutions that
emphasize our visualization approach in an online Appendix
(http://www.biostatisticien.eu/ConvergenceConcepts). We pro-
pose an R package (R Development Core Team 2008) package
called ConvergenceConcepts. This package’s interactive
part provides an interesting pedagogic tool to facilitate visual-
ization of the convergence concepts. The package also created
all of the figures presented here and can be used to investigate
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the convergence of any random variable. This approach aims to
help students develop intuition and logical thinking.

2. MODES OF CONVERGENCE

Probability theory is the body of knowledge that allows us to
formally reason about any uncertain event A. A popular view
of probability is the so-called “frequentist” approach (Fisher
1956): If an experiment is repeated M times “independently”
under essentially identical conditions, and if event A occurs k

times, then as M increases, the ratio k/M approaches a fixed
limit, namely the probability P(A) of A.

In our context we are interested mainly in the probability
of events related to some random variables, namely P [ω ∈
�;Xω ∈ E], where � is some arbitrary set. We use the fol-
lowing property:

P [ω;Xω ∈ E] = lim
M→∞

#{j ∈ {1, . . . ,M};xj ∈ E}
M

,

where xj denotes the j th outcome of X independent of the
others and #{j ∈ {1, . . . ,M};xj ∈ E} ≡ #{xj ∈ E} denotes the
number of j ∈ {1, . . . ,M} such that xj ∈ E, for some set E.

In the sequel, we will study the convergence (in some sense,
to be defined later) of sequences of random variables Xn to X.

We note that (x
j
n − xj )n∈N = (x

j

1 − xj , x
j

2 − xj , . . . , x
j
n −

xj , . . .), the j th sample path of (Xn − X)n∈N.

2.1 Convergence in Probability

We write Xn
P−→ X and say that the sequence (Xn)n∈N con-

verges in probability to X if

∀ε > 0, pn = P [ω; |Xn,ω − Xω| > ε] −→
n→∞ 0. (1)

The index ω can be seen as a labeling of each sample path.
To understand this notion of convergence, we use the afore-
mentioned frequentist approach to approximate the probabil-
ity pn = P [ω; |Xn,ω − Xω| > ε] by the frequency p̂n = 1

M
×

#{|xj
n − xj | > ε}.

Mind visualization approach. We can mentally visualize the
M sample paths of the stochastic process (Xn − X)n=1,...,nmax .
Each sample path is made up of a sequence of points indexed
by the integers. For each successively increasing value of n, we
can then evaluate the proportion p̂n of the sample paths that
are out of a horizontal band [−ε,+ε]. This band can be chosen
to be arbitrarily narrow. The sample paths should be observed
only at each fixed position n, for example, by mentally sliding
a highlighting vertical bar along the n values axis. This is il-
lustrated in Figure 2, which can be considered a static example
of our dynamic mental images. The evolution of p̂n toward 0
informs us about the convergence (or not) in probability of Xn

toward X.

To better understand how Figure 2 describes the idea of con-
vergence in probability, students are invited to manipulate the
interactive version of it provided in our package, as demon-
strated in Example 1.

Example 1. Figure 3 shows the convergence in probability
Xn = Yn = 1

n

∑n
i=1 Yi

P−→ X = 0, where the random variables
Yi are iid N(0,1). We use M = 500 realizations, consider ε =
0.05, and take nmax = 2000. Using our package, the user can
move the vertical bar on the left side of Figure 3, and thus see
the sample paths lying outside the horizontal band, as indicated
by small horizontal (red) marks, and simultaneously observe
their proportion p̂n decreasing to 0 on right side of Figure 3, as
indicated by a sliding (blue) circle.

Remark 1. Note that Xn
P−→ X ⇔ Xn − X

P−→ 0. There-
fore, to study the convergence in probability of a random vari-

Figure 2. Seeing convergence in probability with M = 10 fictitious realizations. For n = 1000, p̂n = 2/10, because we can see two sample
paths lying outside the band [−ε,+ε] in the bar at position 1,000. For n = 2000, p̂n = 1/10, because we can see one sample path lying outside
the band [−ε,+ε] in the bar at position 2,000.
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Figure 3. Ten sample paths of Yn = Xn − X amid the 2,000 (left); p̂n and ân moving toward 0 (right).

able Xn to another random variable X, we can define the ran-
dom variable Yn = Xn − X and study the convergence in prob-
ability of Yn to the constant 0. This remark is also valid for
almost sure convergence and convergence in r th mean (see Ex-
ercise 6).

2.2 Almost Sure Convergence

We write Xn
a.s.−→ X and say that the sequence (Xn)n∈N con-

verges almost surely to X if

P
[
ω; lim

n→∞Xn,ω = Xω

]
= 1. (2)

This means that limn→∞ Xn,ω = Xω for all paths (Xn,ω)n∈N,
except for a set of null probability. Thus almost sure conver-
gence is the familiar pointwise convergence of the sequence of
numbers Xn,ω for every ω outside of a null event. To clarify the
distinction between convergence in probability and almost sure
convergence, we use the following lemma, which contains an
equivalent definition of almost sure convergence.

Lemma 1 (Ferguson 1996, p. 5). Xn
a.s.−→ X if and only if

∀ε > 0, an = P [ω; ∃k ≥ n; |Xk,ω − Xω| > ε] −→
n→∞ 0.

Convergence in probability requires that the probability that
Xn deviates from X by at least ε tends to 0 (for every ε > 0).
Convergence almost surely requires that the probability that
there exists at least a k ≥ n such that Xk deviates from X by
at least ε tends to 0 as n tends to infinity (for every ε > 0). This
demonstrates that an ≥ pn and, consequently, that almost sure
convergence implies convergence in probability.

To better explain this notion of almost sure convergence, we
use the frequentist approach to approximate the probability an

by ân = 1
M

× #{∃k ∈ {n, . . . , nmax}; |xj
k − xj | > ε}.

Mind visualization approach. We can mentally visualize the
pieces of sample paths inside the block [n,nmax], where nmax

should be chosen as large as possible. Then we can count the
proportion ân of the pieces of sample paths that are outside
an horizontal band [−ε,+ε]. The aforementioned block is then
mentally moved along the n values axis and ân is updated ac-
cordingly, as illustrated in Figure 4, which can be considered a
static example of our dynamic mental images. The evolution of
ân toward 0 informs us about the almost sure convergence (or
not) of Xn toward X. Note that we always have (for the same
Xi ’s) ân ≥ p̂n, as illustrated in Figure 3.

Example 1 (Continuing). Figure 3 shows the almost sure
convergence Xn = Yn = 1

n

∑n
i=1 Yi

a.s.−→ X = 0, where the ran-
dom variables Yi are iid N(0,1). We use M = 500 realiza-
tions and put ε = 0.05. We compute ân only for n = 1, . . . ,

Knmax = 1000 with nmax = 2000 and with K = 0.5 chosen in
(0,1) to ensure sufficient future observations in the last blocks.
This allows us to check whether some sample paths lie outside
the band [−ε,+ε] in the last block positions. We also compute
p̂n for n = 1, . . . , nmax = 2000 to see convergence in probabil-
ity, and add this to the same plot. We see that p̂n and ân go
to 0.

2.3 Convergence in rth Mean

For a real number r > 0, we write Xn
r−→ X and say that the

sequence (Xn)n∈N converges to X in the r th mean if

en,r = E|Xn − X|r −→
n→∞ 0. (3)

Here we need to look at the convergence of one sequence of
real numbers to 0. Suppose that we want to check the conver-
gence in r th mean of some random variables Xn to X and that
we cannot calculate en,r explicitly. But if we have a generator
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Figure 4. Seeing almost sure convergence with M = 10 fictitious realizations. For n = 1000, ân = 3/10 because we can see three sample paths
(a, c, d) lying outside the band [−ε,+ε] in the block beginning at position 1,000. For n = 2000, ân = 2/10, because we can see two sample
paths (a and c) lying outside the band [−ε,+ε] in the block beginning at position 2,000.

of the Xn − X, then we can use the following Monte Carlo ap-
proximation of en,r :

ên,r = 1

M

M∑
j=1

|xj
n − xj |r .

Then we can plot the (ên,r )n∈N sequence for n = 1 to a large
value, say n = nmax, to see graphically whether or not it ap-
proaches 0.

See online Appendix Example 2 for an illustration (http://
www.biostatisticien.eu/ConvergenceConcepts).

2.4 Convergence in Law (in Distribution, Weak Conver-
gence)

We write Xn
L−→ X and say that the sequence (Xn)n∈N, with

distribution functions (Fn)n∈N, converges to X in law if

ln(t) = |Fn(t) − F(t)| −→
n→∞ 0 (4)

at all t for which F (the distribution function of X) is continu-
ous.

Here the notion of pointwise convergence of the real numbers
(Fn(t))n∈N to F(t) (for every t at which F is continuous) is
involved. Note that we need not look at the realizations of the
random variables, because the concept of convergence in law
does not require that Xn and X be close in any sense.

In practice, imagine that we want to check the convergence
in law of some random variables Xn to a random variable X

with known distribution function F , and that we do not have the
distribution functions Fn of Xn (defined by Fn(t) = P [Xn ≤
t]). But if we have a generator of the Xn, then we can use the
frequentist approach to approximate the probability Fn(t) by
the empirical distribution function

F̂n(t) = #{xj
n ≤ t}
M

.

Then we can plot F̂n(t) for different increasing values of n to
evaluate whether it approaches F(t). Alternatively, we could
use a tridimensional plot of l̂n(t) = |F̂n(t)−F(t)| as a function
of n and t to evaluate whether it approaches the zero-horizontal
plane.

See online Appendix Example 3 for an illustration (http://
www.biostatisticien.eu/ConvergenceConcepts).

3. POINTING OUT THE DIFFERENCES BETWEEN
THE VARIOUS MODES THROUGH EXAMPLES

In Section 1 we noted the only universally valid implica-
tions between the various modes of convergence. Under certain
additional conditions, some important partial converses hold.
Thus, to fully understand all of the modes of convergence de-
scribed earlier, we believe that it is good pedagogic practice to
provide examples in which one weaker type of convergence is
valid but a stronger type is not valid. Here we propose an exer-
cise with its solution. We provide five more exercises with so-
lutions in the online Appendix (http://www.biostatisticien.eu/
ConvergenceConcepts). Students should use our mind visual-
ization approach to perceive the problem, then use our pack-
age to investigate it numerically and graphically before trying
to demonstrate it rigorously. Students should use our package
not as a black box to “prove” some convergence, but rather to
support their intuition, which should be based logically on the
behavior of the sequence of random variables under investiga-
tion.

Exercise 1. Let Z be a uniform U [0,1] random variable and
define Xn = 1[m.2(−k);(m+1).2(−k))(Z), where n = 2k +m for k ≥
1 and with 0 ≤ m < 2k . Thus X1 = 1, X2 = 1[0,1/2)(Z), X3 =
1[1/2,1)(Z), X4 = 1[0,1/4)(Z), and X5 = 1[1/4,1/2)(Z), . . . .

Does Xn
a.s.−→ 0? Does Xn

P−→ 0? Does Xn
2−→ 0?

Solution to Exercise 1. Figure 5 explains the construction of
Xn.
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Figure 5. A fictitious sample path for Xn.

Let us apply our mental reasoning as explained in Section 2.
Once a z value is randomly drawn, the entire associated sam-
ple path is fully determined. As n increases, each sample path
“stays” for a longer time at 0 but eventually jumps to 1. In fact,
a path will jump to 1 an infinite number of times after each fixed
n value. Thus, with the help of Figure 4, we can immediately
see that for all n = 1, . . . , all of the sample paths will jump to 1
somewhere (and even at many places) in the block beginning at
position n. This demonstrates that we cannot have almost sure
convergence. With regard to the question about convergence in
probability, reconsider Figure 2. An understanding of Figure 5
allows us to see that for each increasing fixed n value, the prob-
ability that the sample paths lie outside a band [−ε, ε] in the bar
at position n corresponds to the proportion of [0,1]-uniform z

values falling into an interval with decreasing length. As such,
we do have convergence in probability in this case.

Using our package, the user can interactively move the gray
block on the left side of Figure 6 and thereby observe the pieces
of sample paths that leave the horizontal band. For each sample
path, red marks (just above the grey block) indicate the first
time that this happens. Simultaneously, we can observe their
proportion ân (equaling 1 here) on the right side of Figure 6,

represented by a sliding (red) circle. In the same way, we can
graphically investigate convergence in probability by sliding the
vertical bar (click first on radio button: Probability); we see that
p̂n is going toward 0. This confirms what we perceived by our
mind visualization approach.

Now Xn does not converge almost surely toward 0, because
we have ∀ω limn→∞ Xn,ω �= 0. For all n, there always exists a
k ≥ n such that Xk = 1; thus an = 1 �= 0. But Xn converges in
probability to 0, because pn = P [Xn = 1] = 1

2k , which tends

to 0 when n = 2k + m → ∞ with 0 ≤ m < 2k . We also see that
X2

n is a Bernouilli(pn), so that E[X2
n] = 1

2k , demonstrating that

Xn
2−→ 0.

SUPPLEMENTAL MATERIALS

See the online Supplement to investigate the examples and
exercises presented in this paper. (.pdf)

[Received November 2006. Revised September 2008.]
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