Topic. Sample correlation coefficient

Suppose that $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots$ are iid vectors with E $X_{i}^{4}<\infty$ and E $Y_{i}^{4}<\infty$. For the sake of simplicity, we will assume without loss of generality that $\mathrm{E} X_{i}=\mathrm{E} Y_{i}=0$ (alternatively, we could base all of the following derivations on the centered versions of the random variables).

We wish to find the asymptotic distribution of the sample correlation $r=s_{x y} /\left(s_{x} s_{y}\right)$, where if we let

$$
\left(\begin{array}{c}
m_{x} \tag{35}\\
m_{y} \\
m_{x x} \\
m_{y y} \\
m_{x y}
\end{array}\right)=\frac{1}{n}\left(\begin{array}{c}
\sum_{i=1}^{n} X_{i} \\
\sum_{i=1}^{n} Y_{i} \\
\sum_{i=1}^{n} X_{i}^{2} \\
\sum_{i=1}^{n} Y_{i}^{2} \\
\sum_{i=1}^{n} X_{i} Y_{i}
\end{array}\right)
$$

then

$$
\begin{equation*}
s_{x}^{2}=m_{x x}-m_{x}^{2}, s_{y}^{2}=m_{y y}-m_{y}^{2}, \text { and } s_{x y}=m_{x y}-m_{x} m_{y} \tag{36}
\end{equation*}
$$

Notice that we have suppressed the n in the notation above in order to keep things slightly simpler. According to the central limit theorem,

$$
\sqrt{n}\left\{\left(\begin{array}{c}
m_{x} \tag{37}\\
m_{y} \\
m_{x x} \\
m_{y y} \\
m_{x y}
\end{array}\right)-\left(\begin{array}{c}
0 \\
0 \\
\sigma_{x}^{2} \\
\sigma_{y}^{2} \\
\sigma_{x y}
\end{array}\right)\right\} \stackrel{\mathcal{L}}{\rightarrow} N_{5}\left\{\underline{0},\left(\begin{array}{ccc}
\operatorname{Cov}\left(X_{1}, X_{1}\right) & \cdots & \operatorname{Cov}\left(X_{1}, X_{1} Y_{1}\right) \\
\operatorname{Cov}\left(Y_{1}, X_{1}\right) & \cdots & \operatorname{Cov}\left(Y_{1}, X_{1} Y_{1}\right) \\
\vdots & \ddots & \vdots \\
\operatorname{Cov}\left(X_{1} Y_{1}, X_{1}\right) & \cdots & \operatorname{Cov}\left(X_{1} Y_{1}, X_{1} Y_{1}\right)
\end{array}\right)\right\} .
$$

Let Σ denote the covariance matrix in expression (37). Define a function $g: R^{5} \rightarrow R^{3}$ such that g applied to the vector of moments in equation (35) yields the vector $\left(s_{x}^{2}, s_{y}^{2}, s_{x y}\right)$ as defined in expression (36). Then

$$
\dot{g}\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right)=\left(\begin{array}{ccccc}
-2 a & 0 & 1 & 0 & 0 \\
0 & -2 b & 0 & 1 & 0 \\
-b & -a & 0 & 0 & 1
\end{array}\right) .
$$

Therefore, if we let

$$
\Sigma^{*}=\dot{g}\left(\begin{array}{c}
0 \\
0 \\
\sigma_{x}^{2} \\
\sigma_{y}^{2} \\
\sigma_{x y}
\end{array}\right) \Sigma \dot{g}\left(\begin{array}{c}
0 \\
0 \\
\sigma_{x}^{2} \\
\sigma_{y}^{2} \\
\sigma_{x y}
\end{array}\right)^{t}=\left(\begin{array}{ccc}
\operatorname{Cov}\left(X_{1}^{2}, X_{1}^{2}\right) & \operatorname{Cov}\left(X_{1}^{2}, Y_{1}^{2}\right) & \operatorname{Cov}\left(X_{1}^{2}, X_{1} Y_{1}\right) \\
\operatorname{Cov}\left(Y_{1}^{2}, X_{1}^{2}\right) & \operatorname{Cov}\left(Y_{1}^{2}, Y_{1}^{2}\right) & \operatorname{Cov}\left(Y_{1}^{2}, X_{1} Y_{1}\right) \\
\operatorname{Cov}\left(X_{1} Y_{1}, X_{1}^{2}\right) & \operatorname{Cov}\left(X_{1} Y_{1}, Y_{1}^{2}\right) & \operatorname{Cov}\left(X_{1} Y_{1}, X_{1} Y_{1}\right)
\end{array}\right)
$$

then by the delta method,

$$
\sqrt{n}\left\{\left(\begin{array}{c}
s_{x}^{2} \\
s_{y}^{2} \\
s_{x y}
\end{array}\right)-\left(\begin{array}{c}
\sigma_{x}^{2} \\
\sigma_{y}^{2} \\
\sigma_{x y}
\end{array}\right)\right\} \stackrel{\mathcal{L}}{\rightarrow} N_{3}\left(\underline{0}, \Sigma^{*}\right) .
$$

Finally, define the function $h(a, b, c)=c / \sqrt{a b}$, so that we have $h\left(s_{x}^{2}, s_{y}^{2}, s_{x y}\right)=r$. Then $\dot{h}(a, b, c)=$ $\frac{1}{2}\left(-c / \sqrt{a^{3} b},-c / \sqrt{a b^{3}}, 2 / \sqrt{a b}\right)$, so that

$$
\dot{h}\left(\begin{array}{c}
\sigma_{x}^{2} \tag{38}\\
\sigma_{y}^{2} \\
\sigma_{x y}
\end{array}\right)=\left(\frac{-\sigma_{x y}}{2 \sigma_{x}^{3} \sigma_{y}}, \frac{-\sigma_{x y}}{2 \sigma_{x} \sigma_{y}^{3}}, \frac{1}{\sigma_{x} \sigma_{y}}\right)=\left(\frac{-\rho}{2 \sigma_{x}^{2}}, \frac{-\rho}{2 \sigma_{y}^{2}}, \frac{1}{\sigma_{x} \sigma_{y}}\right) .
$$

Therefore, if A denotes the 1×3 matrix in equation (38), using the delta method once again yields

$$
\sqrt{n}(r-\rho) \xrightarrow{\mathcal{L}} N\left(0, A \Sigma^{*} A^{t}\right) .
$$

Consider the special case of bivariate normal $\left(X_{i}, Y_{i}\right)$. In this case, we may derive

$$
\Sigma^{*}=\left(\begin{array}{ccc}
2 \sigma_{x}^{4} & 2 \rho^{2} \sigma_{x}^{2} \sigma_{y}^{2} & 2 \rho \sigma_{x}^{3} \sigma_{y} \tag{39}\\
2 \rho^{2} \sigma_{x}^{2} \sigma_{y}^{2} & 2 \sigma_{y}^{2} & 2 \rho \sigma_{x} \sigma_{y}^{3} \\
2 \rho \sigma_{x}^{3} \sigma_{y} & 2 \rho \sigma_{x} \sigma_{y}^{3} & \left(1+\rho^{2}\right) \sigma_{x}^{2} \sigma_{y}^{2}
\end{array}\right)
$$

In this case, $A \Sigma^{*} A^{t}=\left(1-\rho^{2}\right)^{2}$, which implies that

$$
\begin{equation*}
\sqrt{n}(r-\rho) \xrightarrow{\mathcal{L}} N\left\{0,\left(1-\rho^{2}\right)^{2}\right\} . \tag{40}
\end{equation*}
$$

In the normal case, we may derive a variance-stabilizing transformation. According to equation (40), we should find a function $f(x)$ satisfying $f^{\prime}(x)=\left(1-x^{2}\right)^{-1}$. Since

$$
\frac{1}{1-x^{2}}=\frac{1}{2(1-x)}+\frac{1}{2(1+x)},
$$

which is easy to integrate, we obtain

$$
f(x)=\frac{1}{2} \log \frac{1+x}{1-x}
$$

This is called Fisher's transformation; we conclude that

$$
\sqrt{n}\left(\frac{1}{2} \log \frac{1+r}{1-r}-\frac{1}{2} \log \frac{1+\rho}{1-\rho}\right) \stackrel{\mathcal{L}}{\rightarrow} N(0,1) .
$$

