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1. Cadinality of Sets

Given two sets A and B, how to compare the number of elements in A and B?

Let’s begin with finite sets. Given a finite set A, the cardinality of A is defined to be the number

of elements in A and denoted by A. Now let A,B be two finite sets and A = B, then there is a
bijection between A and B. This motivates us to give the definition of the cardinality of any sets.

Definition 1.1. Let A,B be two sets. We say A and B have the same cardinality and write A ∼ B
if there exists a bijection f : A → B.

One can check that ∼ is a equivalence relation, and thus we say A and B have the same cardinality

and write A = B if A ∼ B.

Lemma 1.1. Let X,Y be two sets and f : X → Y, g : Y → X be two maps. Then we have
decompositions X = A ∪A′, Y = B ∪B′, where f(A) = B, g(B′) = A′ and A ∩A′ = B ∩B′ = ∅.

Proof. If f(X) = Y , then the conclusion is trivial. Next we assume that f(X) ̸= Y . Let Γ = {E ⊆
X : E ∩ g(Y − f(E)) = ∅} and A =

⋃
E∈ΓE. Now for any E ∈ Γ, we have E ∩ g(Y − f(A)) = ∅ and

thus A ∩ g(Y − f(A)) = ∅. As a consequence, A is the maximal element in Γ.

Now let B = f(A), B′ = Y −B and A′ = g(B′). Then Y = B ∪B′ and A∩A′ = ∅. If A∪A′ ̸= X,
then there exists x0 ∈ X and x /∈ A ∪ A′. Let A0 = A ∪ {x0}, then we have B = f(A) ⊆ f(A0) and
Y − f(A0) ⊆ B′. Thus, g(Y − f(A0)) ⊆ A′. Since A′ ∩ A0 = ∅, A0 ∩ g(Y − f(A0)) = ∅, implying
A0 ∈ Γ, which contradicts the fact that A is maximal. Thus, we have A ∪ A′ = X, completing the
proof. □

Theorem 1.1 (Cantor-Bernstein). If there exists two injections f : X → Y and g : Y → X, then
X ∼ Y .

Proof. By the previous lemma, we have X = A ∪ A′, Y = B ∪ B′, f(A) = B, g(B′) = A′. Then
f : A → B and g−1 : A′ → B′ are bijections. Thus, we get a bijection

F (x) =

{
f(x) , x ∈ A,
g−1(x) , x ∈ A′.

As a consequence, X ∼ Y . □

Now suppose A = α,B = β. If there exists an injection from A to B, then we write α ≤ β. If
α ≤ β and there exists no bijection between A and B, then we write α < β. If α ≤ β and β ≤ α,
then by Cantor-Bernstein’s Theorem, we have α = β.
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Let N be the set of natural number and ℵ0 be its cardinality. A set is said to be countable if its
cardinality is ℵ0.

In class we have shown that the set of rational number Q is countable. Next we show that the set
of real number R is not countable.

Theorem 1.2. The set (0, 1] is not countable.

Proof. For each number x ∈ (0, 1], consider the binary expansion x =
∑∞

n=1
an
2n , and we restrict the

sequence {an}∞n=1 such that there infinite an = 1. Then we get a bijection between (0, 1] and binary
decimals in which the digit 1 appears infinitely. Now we rewrite x =

∑∞
i=1 2

−ni , where {ni}∞i=1 is
a sequence of positive integral number such that ni+1 > ni for each i ≥ 1. Now let k1 = n1 and
ki = ni − ni−1, i ≥ 2, then {ki}∞i=1 is a sequence of natural number. Let N be the set of sequences
of natural number, then we get a bijection between (0, 1] and N .

Now suppose that (0, 1] is countable, then N is countable and we can write N = {k⃗i}∞i=1, where

k⃗i = (k
(i)
j )j∈N. However, it is impossible, since the element k⃗ = (k

(j)
j + 1)j∈N ∈ N but k⃗ ̸= k⃗i for any

i ≥ 1. Thus, N is not countable, meaning that (0, 1] is not countable. □

Since (0, 1) ⊆ (0, 1] ⊆ R, and one can construct a bijection between (0, 1) and R easily, we have

that R = (0, 1] by Cantor-Bernstein’s Theorem and R is not countable. We denote the cardinality
of R by c or ℵ1. One can see that ℵ0 < ℵ1.

Theorem 1.3. Let A ̸= ∅ be a set, and 2A = {B : B ⊆ A}. Then A ̸= 2A.

Proof. Suppose that A ∼ 2A, then there exists a bijection f : A → 2A. Let B = {x ∈ A : x /∈ f(x)}.
Then there exists y ∈ A such that B = f(y) ∈ 2A. If y ∈ B, then by the defnition of B we have
y /∈ f(y) = B, which is impossible. However, if y /∈ B, then still by the definition of B, y ∈ f(y) = B
and get a contradiction.

Thus, there exists no bijection between A and 2A, meaning that A ̸= 2A. □

Now define g : A → 2A by g(x) = {x} for all x ∈ A, then we get an injection mapping A into 2A.

Thus, we have A < 2A.

Let’s end this section with a question. For an infinite set X, do we have X = X ×X?

2. Baire’s Theorem

In class we have defined open and closed sets in Rn and obtained some basic properties of them.
For instance, the union of open sets is open and the intersection of closed sets is closed. We’ll extend
the content in this section.

Definition 2.1. If G is a countable intersection of open sets, meaning that G = ∩∞
n=1Gn, where Gn

is open for all n, then we say G is a Gδ set. If F = ∪∞
n=1Fn is a countable union of closed sets, then

we say F is an Fσ set.

Theorem 2.1 (Baire). Let E ⊆ Rn be an Fσ set and write E = ∪∞
k=1Fk, where Fk is closed for all

k. If for each k, Fk contains no interior point, so does E.
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Proof. Suppose that x0 is an interior point of E, then there exists δ0 > 0 such that Bδ0(x0) ⊆ E.
Since F1 has no interior point, there exists x1 ∈ Bδ0(x0) such that x1 /∈ F1. Thus, one can choose

0 < δ1 < 1 such that Bδ1(x1) ∩ F1 = ∅ because F1 is closed. By choosing δ1 small enough, we

can assume Bδ1(x1) ⊆ Bδ0(x0). Similarly, we can get Bδ2(x2) ∩ F2 = ∅ and Bδ2(x2) ⊆ Bδ1(x1),
where 0 < δ2 < 1

2 . Repeat this process, we can get a sequence of point {xk}∞k=1 and a sequence

of positive number {δk}∞k=1, such that Bδk(xk) ⊆ Bδk−1
(xk−1), Bδk(xk) ∩ Fk = ∅ and 0 < δk < 1

k .

Noting that xl ∈ Bδk(xk) when l > k, we have |xl − xk| < δk < 1
k . Thus, {xk}∞k=1 is a Cauchy

sequence in Rn. As a consequence, there exists x ∈ Rn, such that limk→∞ |xk −x| = 0. Now we have
|x−xk| ≤ |x−xl|+ |xl−xk| < |x−xl|+ δk for l > k. Letting l tend to infinity, we have |x−xk| ≤ δk
and x ∈ Bδk(xk). Thus, x /∈ Fk for all k. However, x ∈ Bδ0(x0) ⊆ E, which is a contradiction. Thus,
E contains no interior point. □
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