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The multivariate central limit theorem

Theorem

(Multivariate CLT for iid case) Let Xi be iid random p-vectors
with mean µ and and covariance matrix Σ. Then

√
n
(
X̄− µ

) d→Np(0,Σ).

By the Cramer-Wold device, this can be proved by finding the
limit distribution of the sequences of real variables

cT

(
1√
n

n∑
i=1

(Xi − µ)

)
=

1√
n

n∑
i=1

(cTXi − cTµ).
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The multivariate central limit theorem

Because the random variables cTXi − cTµ are iid with zero
mean and variance cTΣc, this sequence is AN(0, cTΣc) by
Theorem ??.

This is exactly the distribution of cTX if X possesses an
Np(0,Σ).
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The multivariate central limit theorem

Example

Suppose that X1, . . . ,Xn is a random sample from the Poisson
distribution with mean θ. Let Zn be the proportions of zero observed,
i.e., Zn = 1/n

∑n
i=1 I{Xj=0}. Let us find the joint asymptotic

distribution of (X̄n,Zn)

Note that E (X1) = θ, EI{X1=0} = e−θ, var(X1) = θ,

var(I{X1=0}) = e−θ(1− e−θ), and EX1I{X1=0} = 0.

So, cov(X1, I{X1=0}) = −θe−θ.
√

n
(
(X̄n,Zn)− (θ, e−θ)

) d→N2(0,Σ), where

Σ =

(
θ −θe−θ

−θe−θ e−θ(1− e−θ)

)
.
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Exercises

Consider two sequences of random variables Xn and Yn. If

(Xn − EXn)/
√

varXn
d→X and corr(Xn,Yn)→ 1, then

(Yn − EYn)/
√

varYn
d→X .

Let X1,X2, . . . be iid double exponential (Laplace) random
variables with density, f (x) = (2τ)−1 exp{−|x |/τ}, where τ is a
positive parameter that represents the mean deviation, i.e.,
τ = E |X |. Let X̄n = n−1

∑n
i=1 Xi and Ȳn = n−1

∑n
i=1 |Xi |.

(a) Find the joint asymptotic distribution of X̄n and Ȳn.
(b) Find the asymptotic distribution of (Ȳn − τ)/X̄n.
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(a) Let Yi = |Xi |. Then (Xi ,Yi ) are iid with E (Xi ,Yi ) = (0, τ).
Since EX 2 = 2τ2, we have varXi = 2τ2 and varYi = τ2. We
also have cov(Xi ,Yi ) = 0. Therefore, from the multivariate CLT,

√
n(X̄n, (Ȳn − τ))

d→N2

(
0,

(
2τ2 0
0 τ2

))
.

(b) From CMT with g(x , y) = y/x , continuous except on the
line x = 0, we have

(Yn − τ)/Xn =
√

n(Yn − τ)/(
√

nXn)
d→V /U, where U and V

are independent normal random variables with zero means and
2τ2 and τ2 respectively. This has a Cauchy distribution with
median zero and scale parameter 1/

√
2, independent of τ . Of

course, (Yn − τ)/(Xn/
√

2) has a standard Cauchy distribution.
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CLT: existence of a variance is not necessary

Definition

A function g : R→ R is called slowly varying at ∞ if, for every
t > 0, limx→∞ g(tx)/g(x) = 1.

Examples: log x , x/(1 + x), and indeed any function with a finite
limit as x →∞; x or e−x are not slowly varying.

Theorem

Let X1,X2, . . . be iid from a CDF F on R. Let v(x) =
∫ x
−x y2dF (y).

Then, there exist constants {an}, {bn} such that∑n
i=1 Xi − an

bn

d→N(0, 1),

if and only if v(x) is slowly varying at ∞.

If F has a finite second moment, v(x) is slowly varying at ∞.
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CLT: existence of a variance is not necessary

Example

Suppose X1,X2, . . . are iid from a t-distribution with 2 degrees of
freedom (t(2)) that has a finite mean but not a finite variance.

The density is given by f (y) = c/(2 + y2)
3
2 for some positive c .

by a direct integration, for some other constant k,

v(x) = k

√
1

2 + x2

[
x −

√
2 + x2arcsinh(x/

√
2)
]
.

on using the fact that arcsinh(x) = log(2x) + O(x−2) as

x →∞, we get, for any t > 0, v(tx)
v(x) → 1.

the partial sums
∑n

i=1 Xi converge to a normal distribution

The centering can be taken to be zero for the centered
t-distribution; it can be shown that the normalizing required is
bn =

√
n log n
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CLT for the independent not necessarily iid case

Theorem

(Lindeberg-Feller) Suppose Xn is a sequence of independent
variables with means µn and variances σ2n <∞. Let s2n =

∑n
i=1 σ

2
i . If

for any ε > 0

1

s2n

n∑
j=1

∫
|x−µj |>εsn

(x − µj)2dFj(x)→ 0, (1)

where Fi is the CDF of Xi , then

n∑
i=1

(Xi − µi )

sn

d→N(0, 1).

The condition (1) is called Lindeberg-Feller condition.
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CLT for the independent not necessarily iid case

Example

Let X1,X2 . . . , be independent variables such that Xj has the uniform
distribution on [−j , j ], j = 1, 2, . . .. Let us verify the conditions of the
theorem are satisfied.

Note that EXj = 0 and σ2j = 1
2j

∫ j
−j x2dx = j2/3 for all j .

s2n =
n∑

j=1

σ2j =
1

3

n∑
j=1

j2 =
n(n + 1)(2n + 1)

18
.

For any ε > 0, n < εsn for sufficiently large n, since
limn n/sn = 0.

Because |Xj | ≤ j ≤ n, when n is sufficiently large,

E (X 2
j I{|Xj |>εsn}) = 0.

Consequently, limn→∞
∑n

j=1 E (X 2
j I{|Xj |>εsn}) <∞. Considering

sn →∞, Lindeberg’s condition holds.

Changliang Zou Asymptotic Statistics-III, Spring 2015



CLT for the independent not necessarily iid case

It is hard to verify the Lindeberg-Feller condition.

A simpler theorem

Theorem

(Liapounov) Suppose Xn is a sequence of independent variables with
means µn and variances σ2n <∞. Let s2n =

∑n
i=1 σ

2
i . If for some

δ > 0

1

s2+δn

n∑
j=1

E |Xj − µj |2+δ → 0 (2)

as n→∞, then

n∑
i=1

(Xi − µi )

sn

d→N(0, 1).
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Liapounov CLT

sn →∞, supj≥1 E |Xj − µj |2+δ <∞ and n−1sn is bounded

In practice, work with δ = 1 or 2.

If Xi is uniformly bounded and sn →∞, the condition is
immediately satisfied with δ = 1.
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Liapounov CLT

Example

Let X1,X2, . . . be independent random variables. Suppose that Xi

has the binomial distribution BIN(pi , 1), i = 1, 2, . . ..

For each i , EXi = pi and
E |Xi − EXi |3 = (1− pi )

3pi + p3
i (1− pi ) ≤ 2pi (1− pi ).∑n

i=1 E |Xi − EXi |3 ≤ 2s2n = 2
∑n

i=1 E |Xi − EXi |2 =
2
∑n

i=1 pi (1− pi ).

Liapounov’s condition (2) holds with δ = 1 if sn →∞.

For example, if pi = 1/i or M1 ≤ pi ≤ M2 with two constants
belong to (0, 1), sn →∞ holds.

Accordingly, by Liapounov’s theorem,
∑n

i=1(Xi−pi )
sn

d→N(0, 1).
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CLT for double array and triangular array

Double array:

X11 with distribution F1

X21,X22 independent, each with distribution F2

· · ·
Xn1, . . .Xnn independent, each with distribution Fn

Triangular array:

X11 with distribution F1

X21,X22 independent, with distribution F21,F22

· · ·
Xn1, . . .Xnn independent, with distributions Fn1, . . . ,Fnn.
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CLT for double array

Theorem

Let the Xij be distributed as a double array. Then

P

(√
n(X̄n − µn)

σn
≤ x

)
→ Φ(x)

as n→∞ for any sequence Fn with mean µn and variance σ2n for
which

En|Xn1 − µn|3/σ3n = o(
√

n).

Here En denotes the expectation under Fn.

Eg, Bin(pn, n), where the success probability depends on n.
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CLT for triangular array

Theorem

Let the Xij be distributed as a triangular array and let E (Xij) = µij ,
var(Xij) = σ2ij <∞, and s2n =

∑n
j=1 σ

2
nj . Then,∑n

j=1(Xnj − µnj)
sn

d→N(0, 1),

provided that

1

s2+δn

n∑
j=1

E |Xnj − µnj |2+δ → 0
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Hajek-Sidak CLT

Theorem

(Hajek-Sidak) Suppose X1,X2, . . . are iid random variables with
mean µ and variance σ2 <∞. Let cn = (cn1, cn2, . . . , cnn) be a
vector of constants such that

max
1≤i≤n

c2
ni

n∑
j=1

c2
nj

→ 0 (3)

as n→∞. Then

n∑
i=1

cni (Xi − µ)

σ

√
n∑

j=1
c2
nj

d→N(0, 1).
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Hajek-Sidak CLT

The condition (3) is to ensure that no coefficient dominates the
vector cn, and is referred as Hajek-Sidak condition.

For example, if cn = (1, 0, . . . , 0), then the condition would fail
and so would the theorem.
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Hajek-Sidak CLT

Example

(Simplest linear regression) Consider the simple linear regression
model yi = β0 + β1xi + εi , where εi ’s are iid with mean 0 and
variance σ2 but are not necessarily normally distributed. The least
squares estimate of β1 based on n observations is

β̂1 =

∑n
i=1(yi − ȳn)(xi − x̄n)∑n

i=1(xi − x̄n)2
= β1 +

∑n
i=1 εi (xi − x̄n)∑n
i=1(xi − x̄n)2

.
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Hajek-Sidak CLT

β̂1 = β1 +
∑n

i=1 εicni/
∑n

j=1 c2
nj , where cni = xi − x̄n.

By the Hajek-Sidak’s Theorem√√√√ n∑
j=1

c2
nj

β̂1 − β1
σ

=

∑n
i=1 εicni

σ
√∑n

j=1 c2
nj

d→N(0, 1),

provided

max1≤i≤n(xi − x̄n)2∑n
j=1(xj − x̄n)2

→ 0

as n→∞.

Under some conditions on the design variables
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Lindeberg-Feller multivariate CLT

Theorem

(Lindeberg-Feller multivariate) Suppose Xi is a sequence of
independent vectors with means µi , covariances Σi and distribution
function Fi . Suppose that 1

n

∑n
i=1 Σi → Σ as n→∞, and that for

any ε > 0

1

n

n∑
j=1

∫
||x−µj ||>ε

√
n
||x− µj ||2dFj(x)→ 0,

then

1√
n

n∑
i=1

(Xi − µi )
d→N(0,Σ).
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Lindeberg-Feller multivariate CLT

Example

(multiple regression) In the linear regression problem, we observe a
vector y = Xβ + ε for a fixed or random matrix X of full rank, and
an error vector ε with iid components with mean zero and variance
σ2. The least squares estimator of β is β̂ = (XTX)−1XTy. This
estimator is unbiased and has covariance matrix σ2(XTX)−1. If the
error vector ε is normally distributed, then β̂ is exactly normally
distributed. Under reasonable conditions on the design matrix, β̂ is
asymptotically normally distributed for a large range of error
distributions.
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Lindeberg-Feller multivariate CLT

Here we fix p and let n tend to infinity. This follows from the
representation

(XTX)1/2(β̂ − β) = (XTX)−1/2XTε =
n∑

i=1

aniεi ,

where an1, . . . , ann are the columns of the (p × n) matrix
(XTX)−1/2XT =: A.

This sequence is asymptotically normal if the vectors
an1ε1, . . . , annεn satisfy the Lindeberg conditions.

The norming matrix (XTX)1/2 has been chosen to ensure that
the vectors in the display have covariance matrix σ2Ip for every
n.

The remaining condition is
n∑

i=1

||ani ||2Eε2i I{||ani |||εi |>ε} → 0.

Changliang Zou Asymptotic Statistics-III, Spring 2015



Lindeberg-Feller multivariate CLT

Because
∑
||ani ||2 = tr(AAT ) = p, it suffices that

maxi Eε2i I{||ani |||εi |>ε} → 0

The expectation Eε2i I{||ani |||εi |>ε} can be bounded

ε−kE |εi |k+2||ani ||k

a set of sufficient conditions is

n∑
i=1

||ani ||k → 0; E |ε1|k <∞, k > 2.
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CLT for a random number of summands

the number of terms present in a partial sum is a random variable.
Precisely, {N(t)}, t ≥ 0, is a family of (nonnegative) integer-valued
random variables, and we want to approximate the distribution of
TN(t)

Theorem

(Anscombe-Renyi) Let Xi be iid with mean µ and a finite variance
σ2, and let {Nn}, be a sequence of (nonnegative) integer-valued
random variables and {an} a sequence of positive constants tending

to ∞ such that Nn/an
p→ c , 0 < c <∞, as n→∞. Then,

TNn − Nnµ

σ
√

Nn

d→N(0, 1) as n→∞.
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CLT for a random number of summands

Example

(coupon collection problem) Consider a problem in which a person
keeps purchasing boxes of cereals until she obtains a full set of some
n coupons.

The assumptions are that the boxes have an equal probability of
containing any of the n coupons mutually independently.

Suppose that the costs of buying the cereal boxes are iid with
some mean µ and some variance σ2.

If it takes Nn boxes to obtain the complete set of all n coupons,
then Nn/(n ln n)

p→ 1 as n→∞.

The total cost to the customer to obtain the complete set of
coupons is TNn = X1 + . . .+ XNn .

TNn − Nnµ

σ
√

n ln n
d→N(0, 1).
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CLT for a random number of summands

[On the asymptotic behavior of Nn].

Let ti be the boxes to collect the i-th coupon after i − 1
coupons have been collected.

the probability of collecting a new coupon given i − 1 coupons is
pi = (n − i + 1)/n.

ti has a geometric distribution with expectation 1/pi and
Nn =

∑n
i=1 ti .

By WLLN, we know

1

n ln n
Nn −

1

n ln n

n∑
i=1

p−1i

p→ 0

1

n ln n

n∑
i=1

p−1i =
1

n ln n

n∑
i=1

n
1

i
=

1

ln n

n∑
i=1

1

i
=:

1

ln n
Hn.

Hn = ln n + γ + o(1); γ is Euler-constant
Nn

n ln n

p→ 1.
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Exercises

Suppose (Xi ,Yi ), i = 1, . . . , n are iid bivariate normal samples
with E (X1) = µ1, E (Y1) = µ2, var(X1) = σ21, var(Y1) = σ22, and
corr(X1,Y1) = ρ. The standard test of the hypothesis
H0 : ρ = 0, or equivalently, H0 : X ,Y are independent, rejects
H0 when the sample correlation rn is sufficiently large in absolute
value. Please find the asymptotic critical value.

Suppose Xi
indep∼ (µ, σ2i ), where σ2i = iδ. Find the asymptotic

distribution of the best linear unbiased estimate of µ.
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Homework

Prove Theorem 1.3.9 or Theorem 1.3.10 (choose one of them);

Suppose X1, . . . ,Xn are i.i.d. N(µ, µ2), µ > 0. Therefore, X̄n

and Sn are both reasonable estimates of µ. Find the limit of
P(|Sn − µ| < |X̄n − µ|);

Consider n observations {(xi , yi )}ni=1 from the simple linear
regression model yi = β0 + β1xi + εi , where εi ’s are iid with
mean 0 and unknown variance σ2 <∞ (but are not necessarily
normally distributed). Assume xi is equally spaced in the design
interval [0, 1], say xi = i

n . We are interested in testing the null
hypothesis H0 : β0 = 0 versus H1 : β0 6= 0. Please provide a
proper test statistic based on the least squares estimate and find
the critical value such that the asymptotic level of the test is α.
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