Asymptotic Statistics-III

Theorem
(Multivariate CLT for iid case) Let \mathbf{X}_{i} be iid random p-vectors with mean $\boldsymbol{\mu}$ and and covariance matrix $\boldsymbol{\Sigma}$. Then

$$
\sqrt{n}(\overline{\mathbf{X}}-\boldsymbol{\mu}) \xrightarrow{d} N_{p}(\mathbf{0}, \boldsymbol{\Sigma}) .
$$

- By the Cramer-Wold device, this can be proved by finding the limit distribution of the sequences of real variables

$$
\mathbf{c}^{T}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\boldsymbol{\mu}\right)\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\mathbf{c}^{T} \mathbf{X}_{i}-\mathbf{c}^{T} \boldsymbol{\mu}\right) .
$$

- Because the random variables $\mathbf{c}^{\boldsymbol{T}} \mathbf{X}_{i}-\mathbf{c}^{\boldsymbol{T}} \boldsymbol{\mu}$ are iid with zero mean and variance $\mathbf{c}^{\top} \boldsymbol{\Sigma} \mathbf{c}$, this sequence is $A N\left(0, \mathbf{c}^{\top} \boldsymbol{\Sigma} \mathbf{c}\right)$ by Theorem ??.
- This is exactly the distribution of $\mathbf{c}^{\top} \mathbf{X}$ if \mathbf{X} possesses an $N_{p}(\mathbf{0}, \boldsymbol{\Sigma})$.

Example

Suppose that X_{1}, \ldots, X_{n} is a random sample from the Poisson distribution with mean θ. Let Z_{n} be the proportions of zero observed, i.e., $Z_{n}=1 / n \sum_{i=1}^{n} I_{\left\{X_{j}=0\right\}}$. Let us find the joint asymptotic distribution of $\left(\bar{X}_{n}, Z_{n}\right)$

- Note that $E\left(X_{1}\right)=\theta, E I_{\left\{X_{1}=0\right\}}=e^{-\theta}, \operatorname{var}\left(X_{1}\right)=\theta$,

$$
\operatorname{var}\left(I_{\left\{X_{1}=0\right\}}\right)=e^{-\theta}\left(1-e^{-\theta}\right), \text { and } E X_{1} I_{\left\{X_{1}=0\right\}}=0
$$

- So, $\operatorname{cov}\left(X_{1}, I_{\left\{X_{1}=0\right\}}\right)=-\theta e^{-\theta}$.
- $\sqrt{n}\left(\left(\bar{X}_{n}, Z_{n}\right)-\left(\theta, e^{-\theta}\right)\right) \xrightarrow{d} N_{2}(\mathbf{0}, \boldsymbol{\Sigma})$, where

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
\theta & -\theta e^{-\theta} \\
-\theta e^{-\theta} & e^{-\theta}\left(1-e^{-\theta}\right)
\end{array}\right)
$$

- Consider two sequences of random variables X_{n} and Y_{n}. If $\left(X_{n}-E X_{n}\right) / \sqrt{\operatorname{var} X_{n}} \xrightarrow{d} X$ and $\operatorname{corr}\left(X_{n}, Y_{n}\right) \rightarrow 1$, then $\left(Y_{n}-E Y_{n}\right) / \sqrt{\operatorname{var} Y_{n}} \xrightarrow{d} X$.
- Let X_{1}, X_{2}, \ldots be iid double exponential (Laplace) random variables with density, $f(x)=(2 \tau)^{-1} \exp \{-|x| / \tau\}$, where τ is a positive parameter that represents the mean deviation, i.e., $\tau=E|X|$. Let $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ and $\bar{Y}_{n}=n^{-1} \sum_{i=1}^{n}\left|X_{i}\right|$.
(a) Find the joint asymptotic distribution of \bar{X}_{n} and \bar{Y}_{n}.
(b) Find the asymptotic distribution of $\left(\bar{Y}_{n}-\tau\right) / \bar{X}_{n}$.
- (a) Let $Y_{i}=\left|X_{i}\right|$. Then $\left(X_{i}, Y_{i}\right)$ are iid with $E\left(X_{i}, Y_{i}\right)=(0, \tau)$. Since $E X^{2}=2 \tau^{2}$, we have $\operatorname{var} X_{i}=2 \tau^{2}$ and $\operatorname{var} Y_{i}=\tau^{2}$. We also have $\operatorname{cov}\left(X_{i}, Y_{i}\right)=0$. Therefore, from the multivariate CLT,

$$
\sqrt{n}\left(\bar{X}_{n},\left(\bar{Y}_{n}-\tau\right)\right) \xrightarrow{d} N_{2}\left(\mathbf{0},\left(\begin{array}{ll}
2 \tau^{2} & 0 \\
0 & \tau^{2}
\end{array}\right)\right) .
$$

(b) From CMT with $g(x, y)=y / x$, continuous except on the line $x=0$, we have
$\left(Y_{n}-\tau\right) / X_{n}=\sqrt{n}\left(Y_{n}-\tau\right) /\left(\sqrt{n} X_{n}\right) \xrightarrow{d} V / U$, where U and V are independent normal random variables with zero means and $2 \tau^{2}$ and τ^{2} respectively. This has a Cauchy distribution with median zero and scale parameter $1 / \sqrt{2}$, independent of τ. Of course, $\left(Y_{n}-\tau\right) /\left(X_{n} / \sqrt{2}\right)$ has a standard Cauchy distribution.

CLT: existence of a variance is not necessary

Definition

A function $g: \mathbb{R} \rightarrow \mathbb{R}$ is called slowly varying at ∞ if, for every $t>0, \lim _{x \rightarrow \infty} g(t x) / g(x)=1$.

Examples: $\log x, x /(1+x)$, and indeed any function with a finite limit as $x \rightarrow \infty ; x$ or e^{-x} are not slowly varying.

Theorem

Let X_{1}, X_{2}, \ldots be iid from a CDF F on \mathbb{R}. Let $v(x)=\int_{-x}^{x} y^{2} d F(y)$. Then, there exist constants $\left\{a_{n}\right\},\left\{b_{n}\right\}$ such that

$$
\frac{\sum_{i=1}^{n} X_{i}-a_{n}}{b_{n}} \xrightarrow{d} N(0,1),
$$

if and only if $v(x)$ is slowly varying at ∞.

If F has a finite second moment, $v(x)$ is slowly varying at ∞.

CLT: existence of a variance is not necessary

Example

- Suppose X_{1}, X_{2}, \ldots are iid from a t-distribution with 2 degrees of freedom ($t(2)$) that has a finite mean but not a finite variance.
- The density is given by $f(y)=c /\left(2+y^{2}\right)^{\frac{3}{2}}$ for some positive c.
- by a direct integration, for some other constant k,

$$
v(x)=k \sqrt{\frac{1}{2+x^{2}}}\left[x-\sqrt{2+x^{2}} \operatorname{arcsinh}(x / \sqrt{2})\right] .
$$

- on using the fact that $\operatorname{arcsinh}(x)=\log (2 x)+O\left(x^{-2}\right)$ as $x \rightarrow \infty$, we get, for any $t>0, \frac{v(t x)}{v(x)} \rightarrow 1$.
- the partial sums $\sum_{i=1}^{n} X_{i}$ converge to a normal distribution
- The centering can be taken to be zero for the centered t-distribution; it can be shown that the normalizing required is $b_{n}=\sqrt{n \log n}$

CLT for the independent not necessarily iid case

Theorem
(Lindeberg-Feller) Suppose X_{n} is a sequence of independent variables with means μ_{n} and variances $\sigma_{n}^{2}<\infty$. Let $s_{n}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}$. If for any $\epsilon>0$

$$
\begin{equation*}
\frac{1}{s_{n}^{2}} \sum_{j=1}^{n} \int_{\left|x-\mu_{j}\right|>\epsilon s_{n}}\left(x-\mu_{j}\right)^{2} d F_{j}(x) \rightarrow 0 \tag{1}
\end{equation*}
$$

where F_{i} is the CDF of X_{i}, then

$$
\frac{\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right)}{s_{n}} \xrightarrow{d} N(0,1)
$$

The condition (1) is called Lindeberg-Feller condition.

CLT for the independent not necessarily iid case

Example

Let $X_{1}, X_{2} \ldots$, be independent variables such that X_{j} has the uniform distribution on $[-j, j], j=1,2, \ldots$. Let us verify the conditions of the theorem are satisfied.

- Note that $E X_{j}=0$ and $\sigma_{j}^{2}=\frac{1}{2 j} \int_{-j}^{j} x^{2} d x=j^{2} / 3$ for all j.
-

$$
s_{n}^{2}=\sum_{j=1}^{n} \sigma_{j}^{2}=\frac{1}{3} \sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{18}
$$

- For any $\epsilon>0, n<\epsilon S_{n}$ for sufficiently large n, since $\lim _{n} n / s_{n}=0$.
- Because $\left|X_{j}\right| \leq j \leq n$, when n is sufficiently large,

$$
E\left(X_{j}^{2} I_{\left\{\left|X_{j}\right|>\epsilon s_{n}\right\}}\right)=0 .
$$

- Consequently, $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} E\left(X_{j}^{2} I_{\left\{\left|X_{j}\right|>\epsilon s_{n}\right\}}\right)<\infty$. Considering $s_{n} \rightarrow \infty$, Lindeberg's condition holds.

CLT for the independent not necessarily iid case

It is hard to verify the Lindeberg-Feller condition.
A simpler theorem
Theorem
(Liapounov) Suppose X_{n} is a sequence of independent variables with means μ_{n} and variances $\sigma_{n}^{2}<\infty$. Let $s_{n}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}$. If for some $\delta>0$

$$
\begin{equation*}
\frac{1}{s_{n}^{2+\delta}} \sum_{j=1}^{n} E\left|X_{j}-\mu_{j}\right|^{2+\delta} \rightarrow 0 \tag{2}
\end{equation*}
$$

as $n \rightarrow \infty$, then

$$
\frac{\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right)}{s_{n}} \xrightarrow{d} N(0,1)
$$

Liapounov CLT

- $s_{n} \rightarrow \infty, \sup _{j \geq 1} E\left|X_{j}-\mu_{j}\right|^{2+\delta}<\infty$ and $n^{-1} s_{n}$ is bounded
- In practice, work with $\delta=1$ or 2 .
- If X_{i} is uniformly bounded and $s_{n} \rightarrow \infty$, the condition is immediately satisfied with $\delta=1$.

Liapounov CLT

Example

Let X_{1}, X_{2}, \ldots be independent random variables. Suppose that X_{i} has the binomial distribution $\operatorname{BIN}\left(p_{i}, 1\right), i=1,2, \ldots$.

- For each $i, E X_{i}=p_{i}$ and

$$
E\left|X_{i}-E X_{i}\right|^{3}=\left(1-p_{i}\right)^{3} p_{i}+p_{i}^{3}\left(1-p_{i}\right) \leq 2 p_{i}\left(1-p_{i}\right)
$$

- $\sum_{i=1}^{n} E\left|X_{i}-E X_{i}\right|^{3} \leq 2 s_{n}^{2}=2 \sum_{i=1}^{n} E\left|X_{i}-E X_{i}\right|^{2}=$ $2 \sum_{i=1}^{n} p_{i}\left(1-p_{i}\right)$.
- Liapounov's condition (2) holds with $\delta=1$ if $s_{n} \rightarrow \infty$.
- For example, if $p_{i}=1 / i$ or $M_{1} \leq p_{i} \leq M_{2}$ with two constants belong to $(0,1), s_{n} \rightarrow \infty$ holds.
- Accordingly, by Liapounov's theorem, $\frac{\sum_{i=1}^{n}\left(X_{i}-p_{i}\right)}{s_{n}} \xrightarrow{d} N(0,1)$.

CLT for double array and triangular array

Double array:
X_{11} with distribution F_{1}
X_{21}, X_{22} independent, each with distribution F_{2}
$X_{n 1}, \ldots X_{n n}$ independent, each with distribution F_{n}

Triangular array:
X_{11} with distribution F_{1}
X_{21}, X_{22} independent, with distribution F_{21}, F_{22}
$X_{n 1}, \ldots X_{n n}$ independent, with distributions $F_{n 1}, \ldots, F_{n n}$.

CLT for double array

Theorem
Let the $X_{i j}$ be distributed as a double array. Then

$$
P\left(\frac{\sqrt{n}\left(\bar{X}_{n}-\mu_{n}\right)}{\sigma_{n}} \leq x\right) \rightarrow \Phi(x)
$$

as $n \rightarrow \infty$ for any sequence F_{n} with mean μ_{n} and variance σ_{n}^{2} for which

$$
E_{n}\left|X_{n 1}-\mu_{n}\right|^{3} / \sigma_{n}^{3}=o(\sqrt{n})
$$

Here E_{n} denotes the expectation under F_{n}.
$\operatorname{Eg}, \operatorname{Bin}\left(p_{n}, n\right)$, where the success probability depends on n.

CLT for triangular array

Theorem
Let the $X_{i j}$ be distributed as a triangular array and let $E\left(X_{i j}\right)=\mu_{i j}$, $\operatorname{var}\left(X_{i j}\right)=\sigma_{i j}^{2}<\infty$, and $s_{n}^{2}=\sum_{j=1}^{n} \sigma_{n j}^{2}$. Then,

$$
\frac{\sum_{j=1}^{n}\left(X_{n j}-\mu_{n j}\right)}{s_{n}} \xrightarrow{d} N(0,1),
$$

provided that

$$
\frac{1}{s_{n}^{2+\delta}} \sum_{j=1}^{n} E\left|X_{n j}-\mu_{n j}\right|^{2+\delta} \rightarrow 0
$$

Hajek-Sidak CLT

Theorem
(Hajek-Sidak) Suppose X_{1}, X_{2}, \ldots are iid random variables with mean μ and variance $\sigma^{2}<\infty$. Let $c_{n}=\left(c_{n 1}, c_{n 2}, \ldots, c_{n n}\right)$ be a vector of constants such that

$$
\begin{equation*}
\max _{1 \leq i \leq n} \frac{c_{n i}^{2}}{\sum_{j=1}^{n} c_{n j}^{2}} \rightarrow 0 \tag{3}
\end{equation*}
$$

as $n \rightarrow \infty$. Then

$$
\frac{\sum_{i=1}^{n} c_{n i}\left(X_{i}-\mu\right)}{\sigma \sqrt{\sum_{j=1}^{n} c_{n j}^{2}}} \xrightarrow{d} N(0,1)
$$

Hajek-Sidak CLT

- The condition (3) is to ensure that no coefficient dominates the vector c_{n}, and is referred as Hajek-Sidak condition.
- For example, if $c_{n}=(1,0, \ldots, 0)$, then the condition would fail and so would the theorem.

Hajek-Sidak CLT

Example

(Simplest linear regression) Consider the simple linear regression model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$, where ε_{i} 's are iid with mean 0 and variance σ^{2} but are not necessarily normally distributed. The least squares estimate of β_{1} based on n observations is

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{n}\right)\left(x_{i}-\bar{x}_{n}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}}=\beta_{1}+\frac{\sum_{i=1}^{n} \varepsilon_{i}\left(x_{i}-\bar{x}_{n}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}} .
$$

Hajek-Sidak CLT

- $\widehat{\beta}_{1}=\beta_{1}+\sum_{i=1}^{n} \varepsilon_{i} c_{n i} / \sum_{j=1}^{n} c_{n j}^{2}$, where $c_{n i}=x_{i}-\bar{x}_{n}$.
- By the Hajek-Sidak's Theorem

$$
\sqrt{\sum_{j=1}^{n} c_{n j}^{2}} \frac{\widehat{\beta}_{1}-\beta_{1}}{\sigma}=\frac{\sum_{i=1}^{n} \varepsilon_{i} c_{n i}}{\sigma \sqrt{\sum_{j=1}^{n} c_{n j}^{2}}} \xrightarrow{d} N(0,1)
$$

provided

$$
\frac{\max _{1 \leq i \leq n}\left(x_{i}-\bar{x}_{n}\right)^{2}}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}_{n}\right)^{2}} \rightarrow 0
$$

as $n \rightarrow \infty$.

- Under some conditions on the design variables

Lindeberg-Feller multivariate CLT

Theorem
(Lindeberg-Feller multivariate) Suppose \mathbf{X}_{i} is a sequence of independent vectors with means $\boldsymbol{\mu}_{i}$, covariances $\boldsymbol{\Sigma}_{i}$ and distribution function F_{i}. Suppose that $\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\Sigma}_{i} \rightarrow \boldsymbol{\Sigma}$ as $n \rightarrow \infty$, and that for any $\epsilon>0$

$$
\frac{1}{n} \sum_{j=1}^{n} \int_{\left\|\mathbf{x}-\boldsymbol{\mu}_{j}\right\|>\epsilon \sqrt{n}}\left\|\mathbf{x}-\boldsymbol{\mu}_{j}\right\|^{2} d F_{j}(\mathbf{x}) \rightarrow 0
$$

then

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\boldsymbol{\mu}_{i}\right) \xrightarrow{d} N(\mathbf{0}, \boldsymbol{\Sigma})
$$

Lindeberg-Feller multivariate CLT

Example

(multiple regression) In the linear regression problem, we observe a vector $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ for a fixed or random matrix \mathbf{X} of full rank, and an error vector ε with iid components with mean zero and variance σ^{2}. The least squares estimator of $\boldsymbol{\beta}$ is $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$. This estimator is unbiased and has covariance matrix $\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$. If the error vector ε is normally distributed, then $\widehat{\boldsymbol{\beta}}$ is exactly normally distributed. Under reasonable conditions on the design matrix, $\widehat{\boldsymbol{\beta}}$ is asymptotically normally distributed for a large range of error distributions.

Lindeberg-Feller multivariate CLT

Here we fix p and let n tend to infinity. This follows from the representation

$$
\left(\mathbf{X}^{T} \mathbf{X}\right)^{1 / 2}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1 / 2} \mathbf{X}^{T} \varepsilon=\sum_{i=1}^{n} \mathbf{a}_{n i} \varepsilon_{i}
$$

where $\mathbf{a}_{n 1}, \ldots, \mathbf{a}_{n n}$ are the columns of the $(p \times n)$ matrix $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1 / 2} \mathbf{X}^{\top}=: \mathbf{A}$.

- This sequence is asymptotically normal if the vectors $\mathbf{a}_{n 1} \varepsilon_{1}, \ldots, \mathbf{a}_{n n} \varepsilon_{n}$ satisfy the Lindeberg conditions.
- The norming matrix $\left(\mathbf{X}^{T} \mathbf{X}\right)^{1 / 2}$ has been chosen to ensure that the vectors in the display have covariance matrix $\sigma^{2} \mathbf{I}_{p}$ for every n.
- The remaining condition is

$$
\sum_{i=1}^{n}\left\|\mathbf{a}_{n i}\right\|^{2} E \varepsilon_{i}^{2} I_{\left\{\left\|\mathbf{a}_{n i}\left|\| \varepsilon_{i}\right|>\epsilon\right\}\right.} \rightarrow 0
$$

Lindeberg-Feller multivariate CLT

- Because $\sum\left\|\mathbf{a}_{n i}\right\|^{2}=\operatorname{tr}\left(\mathbf{A} \mathbf{A}^{T}\right)=p$, it suffices that $\max _{i} E \varepsilon_{i}^{2} I_{\left\{\left|\left|\mathbf{a}_{n i} \|\left|\left|\varepsilon_{i}\right|>\epsilon\right\}\right.\right.\right.} \rightarrow 0$
- The expectation $E \varepsilon_{i}^{2} I_{\left\{\left|\left|\mathbf{a}_{n i}\right| \| \varepsilon_{i}\right|>\epsilon\right\}}$ can be bounded $\epsilon^{-k} E\left|\varepsilon_{i}\right|^{k+2}\left\|\mathbf{a}_{n i}\right\|^{k}$
- a set of sufficient conditions is

$$
\sum_{i=1}^{n}\left\|\mathbf{a}_{n i}\right\|^{k} \rightarrow 0 ; \quad E\left|\varepsilon_{1}\right|^{k}<\infty, k>2
$$

CLT for a random number of summands

the number of terms present in a partial sum is a random variable. Precisely, $\{N(t)\}, t \geq 0$, is a family of (nonnegative) integer-valued random variables, and we want to approximate the distribution of $T_{N(t)}$

Theorem
(Anscombe-Renyi) Let X_{i} be iid with mean μ and a finite variance σ^{2}, and let $\left\{N_{n}\right\}$, be a sequence of (nonnegative) integer-valued random variables and $\left\{a_{n}\right\}$ a sequence of positive constants tending to ∞ such that $N_{n} / a_{n} \xrightarrow{p} c, 0<c<\infty$, as $n \rightarrow \infty$. Then,

$$
\frac{T_{N_{n}}-N_{n} \mu}{\sigma \sqrt{N_{n}}} \xrightarrow{d} N(0,1) \text { as } n \rightarrow \infty .
$$

CLT for a random number of summands

Example

(coupon collection problem) Consider a problem in which a person keeps purchasing boxes of cereals until she obtains a full set of some n coupons.

- The assumptions are that the boxes have an equal probability of containing any of the n coupons mutually independently.
- Suppose that the costs of buying the cereal boxes are iid with some mean μ and some variance σ^{2}.
- If it takes N_{n} boxes to obtain the complete set of all n coupons, then $N_{n} /(n \ln n) \xrightarrow{p} 1$ as $n \rightarrow \infty$.
- The total cost to the customer to obtain the complete set of coupons is $T_{N_{n}}=X_{1}+\ldots+X_{N_{n}}$.
-

$$
\frac{T_{N_{n}}-N_{n} \mu}{\sigma \sqrt{ } n \ln n} \xrightarrow{d} N(0,1)
$$

CLT for a random number of summands

[On the asymptotic behavior of N_{n}].

- Let t_{i} be the boxes to collect the i-th coupon after $i-1$ coupons have been collected.
- the probability of collecting a new coupon given $i-1$ coupons is $p_{i}=(n-i+1) / n$.
- t_{i} has a geometric distribution with expectation $1 / p_{i}$ and $N_{n}=\sum_{i=1}^{n} t_{i}$.
- By WLLN, we know

$$
\frac{1}{n \ln n} N_{n}-\frac{1}{n \ln n} \sum_{i=1}^{n} p_{i}^{-1} \xrightarrow{p} 0
$$

-

$$
\frac{1}{n \ln n} \sum_{i=1}^{n} p_{i}^{-1}=\frac{1}{n \ln n} \sum_{i=1}^{n} n \frac{1}{i}=\frac{1}{\ln n} \sum_{i=1}^{n} \frac{1}{i}=: \frac{1}{\ln n} H_{n} .
$$

- $H_{n}=\ln n+\gamma+o(1) ; \gamma$ is Euler-constant
- $\frac{N_{n}}{n \ln n} \xrightarrow{p} 1$.
- Suppose $\left(X_{i}, Y_{i}\right), i=1, \ldots, n$ are iid bivariate normal samples with $E\left(X_{1}\right)=\mu_{1}, E\left(Y_{1}\right)=\mu_{2}, \operatorname{var}\left(X_{1}\right)=\sigma_{1}^{2}, \operatorname{var}\left(Y_{1}\right)=\sigma_{2}^{2}$, and $\operatorname{corr}\left(X_{1}, Y_{1}\right)=\rho$. The standard test of the hypothesis $H_{0}: \rho=0$, or equivalently, $H_{0}: X, Y$ are independent, rejects H_{0} when the sample correlation r_{n} is sufficiently large in absolute value. Please find the asymptotic critical value.
- Suppose $X_{i} \stackrel{\text { indep }}{\sim}\left(\mu, \sigma_{i}^{2}\right)$, where $\sigma_{i}^{2}=i \delta$. Find the asymptotic distribution of the best linear unbiased estimate of μ.

Homework

- Prove Theorem 1.3.9 or Theorem 1.3.10 (choose one of them);
- Suppose X_{1}, \ldots, X_{n} are i.i.d. $N\left(\mu, \mu^{2}\right), \mu>0$. Therefore, \bar{X}_{n} and S_{n} are both reasonable estimates of μ. Find the limit of $P\left(\left|S_{n}-\mu\right|<\left|\bar{X}_{n}-\mu\right|\right)$;
- Consider n observations $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ from the simple linear regression model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$, where ε_{i} 's are iid with mean 0 and unknown variance $\sigma^{2}<\infty$ (but are not necessarily normally distributed). Assume x_{i} is equally spaced in the design interval $[0,1]$, say $x_{i}=\frac{i}{n}$. We are interested in testing the null hypothesis $H_{0}: \beta_{0}=0$ versus $H_{1}: \beta_{0} \neq 0$. Please provide a proper test statistic based on the least squares estimate and find the critical value such that the asymptotic level of the test is α.

