Asymptotic Statistics-III

Changliang Zou Asymptotic Statistics-III, Spring 2015

(Multivariate CLT for iid case) Let X_i be iid random p-vectors with mean μ and and covariance matrix Σ . Then

$$\sqrt{n}\left(\bar{\mathbf{X}}-\boldsymbol{\mu}\right)\overset{d}{\rightarrow}\mathsf{N}_{p}(\mathbf{0},\boldsymbol{\Sigma}).$$

• By the Cramer-Wold device, this can be proved by finding the limit distribution of the sequences of real variables

$$\mathbf{c}^{\mathsf{T}}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(\mathbf{X}_{i}-\boldsymbol{\mu})\right)=\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(\mathbf{c}^{\mathsf{T}}\mathbf{X}_{i}-\mathbf{c}^{\mathsf{T}}\boldsymbol{\mu}).$$

- Because the random variables c^TX_i c^Tμ are iid with zero mean and variance c^TΣc, this sequence is AN(0, c^TΣc) by Theorem ??.
- This is exactly the distribution of $\mathbf{c}^T \mathbf{X}$ if \mathbf{X} possesses an $N_p(\mathbf{0}, \mathbf{\Sigma})$.

The multivariate central limit theorem

Example

Suppose that X_1, \ldots, X_n is a random sample from the Poisson distribution with mean θ . Let Z_n be the proportions of zero observed, i.e., $Z_n = 1/n \sum_{i=1}^n I_{\{X_j=0\}}$. Let us find the joint asymptotic distribution of (\overline{X}_n, Z_n)

• Note that
$$E(X_1) = \theta$$
, $EI_{\{X_1=0\}} = e^{-\theta}$, $var(X_1) = \theta$, $var(I_{\{X_1=0\}}) = e^{-\theta}(1 - e^{-\theta})$, and $EX_1I_{\{X_1=0\}} = 0$.

• So,
$$cov(X_1, I_{\{X_1=0\}}) = -\theta e^{-\theta}$$

•
$$\sqrt{n}\left((\bar{X}_n, Z_n) - (\theta, e^{-\theta})\right) \stackrel{d}{\rightarrow} N_2(\mathbf{0}, \mathbf{\Sigma})$$
, where

$$oldsymbol{\Sigma} = egin{pmatrix} heta & - heta e^{- heta} \ - heta e^{- heta} & e^{- heta}(1-e^{- heta}) \end{pmatrix}$$

- Consider two sequences of random variables X_n and Y_n . If $(X_n EX_n)/\sqrt{\operatorname{var} X_n} \xrightarrow{d} X$ and $\operatorname{corr}(X_n, Y_n) \to 1$, then $(Y_n EY_n)/\sqrt{\operatorname{var} Y_n} \xrightarrow{d} X$.
- Let X₁, X₂,... be iid double exponential (Laplace) random variables with density, f(x) = (2τ)⁻¹ exp{-|x|/τ}, where τ is a positive parameter that represents the mean deviation, i.e., τ = E|X|. Let X
 n = n⁻¹ Σ{i=1}ⁿ X_i and Y
 n = n⁻¹ Σ{i=1}ⁿ |X_i|.
 (a) Find the joint asymptotic distribution of X
 _n and Y
 _n.
 (b) Find the asymptotic distribution of (Y
 _n τ)/X
 _n.

 (a) Let Y_i = |X_i|. Then (X_i, Y_i) are iid with E(X_i, Y_i) = (0, τ). Since EX² = 2τ², we have varX_i = 2τ² and varY_i = τ². We also have cov(X_i, Y_i) = 0. Therefore, from the multivariate CLT,

$$\sqrt{n}(\bar{X}_n,(\bar{Y}_n-\tau)) \stackrel{d}{\rightarrow} N_2\left(\mathbf{0},\begin{pmatrix} 2\tau^2 & 0\\ 0 & \tau^2 \end{pmatrix}\right).$$

(b) From CMT with g(x, y) = y/x, continuous except on the line x = 0, we have

 $(Y_n - \tau)/X_n = \sqrt{n}(Y_n - \tau)/(\sqrt{n}X_n) \xrightarrow{d} V/U$, where U and V are independent normal random variables with zero means and $2\tau^2$ and τ^2 respectively. This has a Cauchy distribution with median zero and scale parameter $1/\sqrt{2}$, independent of τ . Of course, $(Y_n - \tau)/(X_n/\sqrt{2})$ has a standard Cauchy distribution.

CLT: existence of a variance is not necessary

Definition

A function $g : \mathbb{R} \to \mathbb{R}$ is called slowly varying at ∞ if, for every t > 0, $\lim_{x\to\infty} g(tx)/g(x) = 1$.

Examples: log x, x/(1 + x), and indeed any function with a finite limit as $x \to \infty$; x or e^{-x} are not slowly varying.

Theorem

Let $X_1, X_2, ...$ be iid from a CDF F on \mathbb{R} . Let $v(x) = \int_{-x}^{x} y^2 dF(y)$. Then, there exist constants $\{a_n\}, \{b_n\}$ such that

$$\frac{\sum_{i=1}^n X_i - a_n}{b_n} \stackrel{d}{\to} N(0,1),$$

if and only if v(x) is slowly varying at ∞ .

If F has a finite second moment, v(x) is slowly varying at ∞ .

CLT: existence of a variance is not necessary

Example

- Suppose X₁, X₂,... are iid from a t-distribution with 2 degrees of freedom (t(2)) that has a finite mean but not a finite variance.
- The density is given by $f(y) = c/(2+y^2)^{\frac{3}{2}}$ for some positive c.
- by a direct integration, for some other constant k,

$$v(x) = k\sqrt{\frac{1}{2+x^2}} \left[x - \sqrt{2+x^2} \operatorname{arcsinh}(x/\sqrt{2}) \right].$$

- on using the fact that $\operatorname{arcsinh}(x) = \log(2x) + O(x^{-2})$ as $x \to \infty$, we get, for any t > 0, $\frac{v(tx)}{v(x)} \to 1$.
- the partial sums $\sum_{i=1}^{n} X_i$ converge to a normal distribution
- The centering can be taken to be zero for the centered *t*-distribution; it can be shown that the normalizing required is $b_n = \sqrt{n \log n}$

(Lindeberg-Feller) Suppose X_n is a sequence of independent variables with means μ_n and variances $\sigma_n^2 < \infty$. Let $s_n^2 = \sum_{i=1}^n \sigma_i^2$. If for any $\epsilon > 0$

$$\frac{1}{s_n^2} \sum_{j=1}^n \int_{|x-\mu_j| > \epsilon s_n} (x-\mu_j)^2 dF_j(x) \to 0,$$
(1)

where F_i is the CDF of X_i , then

$$\frac{\sum\limits_{i=1}^n (X_i - \mu_i)}{s_n} \stackrel{d}{\rightarrow} N(0, 1).$$

The condition (1) is called Lindeberg-Feller condition.

CLT for the independent not necessarily iid case

Example

Let $X_1, X_2...$, be independent variables such that X_j has the uniform distribution on [-j, j], j = 1, 2, ... Let us verify the conditions of the theorem are satisfied.

- Note that $EX_j = 0$ and $\sigma_j^2 = \frac{1}{2j} \int_{-j}^j x^2 dx = j^2/3$ for all j. • $s_n^2 = \sum_{i=1}^n \sigma_j^2 = \frac{1}{3} \sum_{i=1}^n j^2 = \frac{n(n+1)(2n+1)}{18}$.
- For any ε > 0, n < εs_n for sufficiently large n, since lim_n n/s_n = 0.
- Because $|X_j| \le j \le n$, when *n* is sufficiently large,

$$E(X_j^2 I_{\{|X_j| > \epsilon s_n\}}) = 0.$$

• Consequently, $\lim_{n\to\infty} \sum_{j=1}^{n} E(X_j^2 I_{\{|X_j| > \epsilon s_n\}}) < \infty$. Considering $s_n \to \infty$, Lindeberg's condition holds.

CLT for the independent not necessarily iid case

It is hard to verify the Lindeberg-Feller condition.

A simpler theorem

Theorem

(Liapounov) Suppose X_n is a sequence of independent variables with means μ_n and variances $\sigma_n^2 < \infty$. Let $s_n^2 = \sum_{i=1}^n \sigma_i^2$. If for some $\delta > 0$

$$\frac{1}{s_n^{2+\delta}} \sum_{j=1}^n E|X_j - \mu_j|^{2+\delta} \to 0$$
 (2)

as $n \to \infty$, then

$$\frac{\sum_{i=1}^{n}(X_{i}-\mu_{i})}{s_{n}} \xrightarrow{d} N(0,1).$$

- $s_n \to \infty$, $\sup_{j \ge 1} E|X_j \mu_j|^{2+\delta} < \infty$ and $n^{-1}s_n$ is bounded
- In practice, work with $\delta = 1$ or 2.
- If X_i is uniformly bounded and s_n → ∞, the condition is immediately satisfied with δ = 1.

▲ 祠 ▶ → 三 ▶ →

Example

Let $X_1, X_2, ...$ be independent random variables. Suppose that X_i has the binomial distribution BIN $(p_i, 1), i = 1, 2, ...$

• For each *i*,
$$EX_i = p_i$$
 and
 $E|X_i - EX_i|^3 = (1 - p_i)^3 p_i + p_i^3 (1 - p_i) \le 2p_i(1 - p_i).$

•
$$\sum_{i=1}^{n} E|X_i - EX_i|^3 \le 2s_n^2 = 2\sum_{i=1}^{n} E|X_i - EX_i|^2 = 2\sum_{i=1}^{n} p_i(1-p_i).$$

- Liapounov's condition (2) holds with $\delta = 1$ if $s_n \to \infty$.
- For example, if $p_i = 1/i$ or $M_1 \le p_i \le M_2$ with two constants belong to (0, 1), $s_n \to \infty$ holds.
- Accordingly, by Liapounov's theorem, $\frac{\sum_{i=1}^{n}(X_i p_i)}{s_n} \stackrel{d}{\rightarrow} N(0, 1).$

CLT for double array and triangular array

Double array:

 X_{11} with distribution F_1 X_{21}, X_{22} independent, each with distribution F_2 \dots $X_{n1}, \dots X_{nn}$ independent, each with distribution F_n

Triangular array:

 X_{11} with distribution F_1 X_{21}, X_{22} independent, with distribution F_{21}, F_{22} ... $X_{n1}, \ldots X_{nn}$ independent, with distributions F_{n1}, \ldots, F_{nn} .

Let the X_{ii} be distributed as a double array. Then

$$P\left(\frac{\sqrt{n}(\bar{X}_n-\mu_n)}{\sigma_n}\leq x\right)\to\Phi(x)$$

as $n \to \infty$ for any sequence F_n with mean μ_n and variance σ_n^2 for which

$$E_n|X_{n1}-\mu_n|^3/\sigma_n^3=o(\sqrt{n}).$$

Here E_n denotes the expectation under F_n .

Eg, $Bin(p_n, n)$, where the success probability depends on n.

Let the X_{ij} be distributed as a triangular array and let $E(X_{ij}) = \mu_{ij}$, $var(X_{ij}) = \sigma_{ij}^2 < \infty$, and $s_n^2 = \sum_{j=1}^n \sigma_{nj}^2$. Then,

$$\frac{\sum_{j=1}^{n}(X_{nj}-\mu_{nj})}{s_{n}} \xrightarrow{d} N(0,1),$$

provided that

$$\frac{1}{s_n^{2+\delta}}\sum_{j=1}^n E|X_{nj}-\mu_{nj}|^{2+\delta}\to 0$$

Hajek-Sidak CLT

Theorem

(Hajek-Sidak) Suppose $X_1, X_2, ...$ are iid random variables with mean μ and variance $\sigma^2 < \infty$. Let $c_n = (c_{n1}, c_{n2}, ..., c_{nn})$ be a vector of constants such that

$$\max_{1 \le i \le n} \frac{c_{ni}^2}{\sum\limits_{j=1}^n c_{nj}^2} \to 0$$
(3)

・ 同 ト ・ ヨ ト ・ ヨ ト

as $n \to \infty$. Then

$$\frac{\sum_{i=1}^{n} c_{ni}(X_i - \mu)}{\sigma_{\sqrt{\sum_{j=1}^{n} c_{nj}^2}}} \stackrel{d}{\to} N(0, 1).$$

- The condition (3) is to ensure that no coefficient dominates the vector c_n , and is referred as Hajek-Sidak condition.
- For example, if $c_n = (1, 0, ..., 0)$, then the condition would fail and so would the theorem.

Example

(Simplest linear regression) Consider the simple linear regression model $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where ε_i 's are iid with mean 0 and variance σ^2 but are not necessarily normally distributed. The least squares estimate of β_1 based on *n* observations is

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y}_{n})(x_{i} - \bar{x}_{n})}{\sum_{i=1}^{n} (x_{i} - \bar{x}_{n})^{2}} = \beta_{1} + \frac{\sum_{i=1}^{n} \varepsilon_{i}(x_{i} - \bar{x}_{n})}{\sum_{i=1}^{n} (x_{i} - \bar{x}_{n})^{2}}.$$

Hajek-Sidak CLT

•
$$\widehat{\beta}_1 = \beta_1 + \sum_{i=1}^n \varepsilon_i c_{ni} / \sum_{j=1}^n c_{nj}^2$$
, where $c_{ni} = x_i - \bar{x}_n$.

• By the Hajek-Sidak's Theorem

$$\sqrt{\sum_{j=1}^{n} c_{nj}^2} \frac{\widehat{\beta}_1 - \beta_1}{\sigma} = \frac{\sum_{i=1}^{n} \varepsilon_i c_{ni}}{\sigma \sqrt{\sum_{j=1}^{n} c_{nj}^2}} \stackrel{d}{\to} N(0, 1),$$

provided

$$\frac{\max_{1\leq i\leq n}(x_i-\bar{x}_n)^2}{\sum_{j=1}^n(x_j-\bar{x}_n)^2}\to 0$$

as $n \to \infty$.

• Under some conditions on the design variables

-∰ ► < ∃ ►

(Lindeberg-Feller multivariate) Suppose X_i is a sequence of independent vectors with means μ_i , covariances Σ_i and distribution function F_i . Suppose that $\frac{1}{n}\sum_{i=1}^{n} \Sigma_i \rightarrow \Sigma$ as $n \rightarrow \infty$, and that for any $\epsilon > 0$

$$\frac{1}{n}\sum_{j=1}^n\int_{||\mathbf{x}-\boldsymbol{\mu}_j||>\epsilon\sqrt{n}}||\mathbf{x}-\boldsymbol{\mu}_j||^2dF_j(\mathbf{x})\to 0,$$

then

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n} (\mathbf{X}_{i} - \boldsymbol{\mu}_{i}) \stackrel{d}{\rightarrow} N(\mathbf{0}, \boldsymbol{\Sigma}).$$

Example

(multiple regression) In the linear regression problem, we observe a vector $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ for a fixed or random matrix \mathbf{X} of full rank, and an error vector $\boldsymbol{\varepsilon}$ with iid components with mean zero and variance σ^2 . The least squares estimator of $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$. This estimator is unbiased and has covariance matrix $\sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$. If the error vector $\boldsymbol{\varepsilon}$ is normally distributed, then $\hat{\boldsymbol{\beta}}$ is exactly normally distributed. Under reasonable conditions on the design matrix, $\hat{\boldsymbol{\beta}}$ is asymptotically normally distributed for a large range of error distributions.

Lindeberg-Feller multivariate CLT

Here we fix p and let n tend to infinity. This follows from the representation

$$(\mathbf{X}^T\mathbf{X})^{1/2}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}) = (\mathbf{X}^T\mathbf{X})^{-1/2}\mathbf{X}^T\boldsymbol{\varepsilon} = \sum_{i=1}^n \mathbf{a}_{ni}\varepsilon_i,$$

where $\mathbf{a}_{n1}, \ldots, \mathbf{a}_{nn}$ are the columns of the $(p \times n)$ matrix $(\mathbf{X}^T \mathbf{X})^{-1/2} \mathbf{X}^T =: \mathbf{A}$.

- This sequence is asymptotically normal if the vectors $\mathbf{a}_{n1}\varepsilon_1, \ldots, \mathbf{a}_{nn}\varepsilon_n$ satisfy the Lindeberg conditions.
- The norming matrix $(\mathbf{X}^T \mathbf{X})^{1/2}$ has been chosen to ensure that the vectors in the display have covariance matrix $\sigma^2 \mathbf{I}_p$ for every *n*.
- The remaining condition is

$$\sum_{i=1}^{n} ||\mathbf{a}_{ni}||^2 E \varepsilon_i^2 I_{\{||\mathbf{a}_{ni}|||\varepsilon_i| > \epsilon\}} \to 0.$$

Lindeberg-Feller multivariate CLT

- Because $\sum_{i=1}^{n} ||\mathbf{a}_{ni}||^2 = \operatorname{tr}(\mathbf{A}\mathbf{A}^T) = p$, it suffices that $\max_i E\varepsilon_i^2 I_{\{||\mathbf{a}_{ni}|||\varepsilon_i| > \epsilon\}} \to 0$
- The expectation $E \varepsilon_i^2 I_{\{||\mathbf{a}_{ni}|||\varepsilon_i|>\epsilon\}}$ can be bounded $\epsilon^{-k} E |\varepsilon_i|^{k+2} ||\mathbf{a}_{ni}||^k$
- a set of sufficient conditions is

$$\sum_{i=1}^{n} ||\mathbf{a}_{ni}||^{k} \to 0; \quad E|\varepsilon_{1}|^{k} < \infty, \ k > 2.$$

the number of terms present in a partial sum is a random variable. Precisely, $\{N(t)\}, t \ge 0$, is a family of (nonnegative) integer-valued random variables, and we want to approximate the distribution of $T_{N(t)}$

Theorem

(Anscombe-Renyi) Let X_i be iid with mean μ and a finite variance σ^2 , and let $\{N_n\}$, be a sequence of (nonnegative) integer-valued random variables and $\{a_n\}$ a sequence of positive constants tending to ∞ such that $N_n/a_n \xrightarrow{p} c, 0 < c < \infty$, as $n \to \infty$. Then,

$$rac{T_{N_n}-N_n\mu}{\sigma\sqrt{N_n}} \stackrel{d}{
ightarrow} N(0,1) \ \ \text{as} \ \ n
ightarrow\infty.$$

CLT for a random number of summands

Example

(coupon collection problem) Consider a problem in which a person keeps purchasing boxes of cereals until she obtains a full set of some *n* coupons.

- The assumptions are that the boxes have an equal probability of containing any of the *n* coupons mutually independently.
- Suppose that the costs of buying the cereal boxes are iid with some mean μ and some variance σ^2 .
- If it takes N_n boxes to obtain the complete set of all n coupons, then $N_n/(n \ln n) \xrightarrow{p} 1$ as $n \to \infty$.
- The total cost to the customer to obtain the complete set of coupons is $T_{N_n} = X_1 + \ldots + X_{N_n}$.

$$\frac{T_{N_n}-N_n\mu}{\sigma\sqrt{n\ln n}} \stackrel{d}{\to} N(0,1).$$

CLT for a random number of summands

[On the asymptotic behavior of N_n].

- Let t_i be the boxes to collect the *i*-th coupon after i 1 coupons have been collected.
- the probability of collecting a new coupon given i 1 coupons is $p_i = (n i + 1)/n$.
- t_i has a geometric distribution with expectation $1/p_i$ and $N_n = \sum_{i=1}^n t_i$.
- By WLLN, we know

٠

$$\frac{1}{n\ln n}N_n - \frac{1}{n\ln n}\sum_{i=1}^n p_i^{-1} \stackrel{p}{\to} 0$$

$$\frac{1}{n \ln n} \sum_{i=1}^{n} p_i^{-1} = \frac{1}{n \ln n} \sum_{i=1}^{n} n \frac{1}{i} = \frac{1}{\ln n} \sum_{i=1}^{n} \frac{1}{i} =: \frac{1}{\ln n} H_n.$$

•
$$H_n = \ln n + \gamma + o(1); \gamma$$
 is Euler-constant
• $\frac{N_n}{n \ln n} \xrightarrow{P} 1.$

- Suppose (X_i, Y_i), i = 1,..., n are iid bivariate normal samples with E(X₁) = μ₁, E(Y₁) = μ₂, var(X₁) = σ₁², var(Y₁) = σ₂², and corr(X₁, Y₁) = ρ. The standard test of the hypothesis H₀ : ρ = 0, or equivalently, H₀ : X, Y are independent, rejects H₀ when the sample correlation r_n is sufficiently large in absolute value. Please find the asymptotic critical value.
- Suppose $X_i \stackrel{\text{indep}}{\sim} (\mu, \sigma_i^2)$, where $\sigma_i^2 = i\delta$. Find the asymptotic distribution of the best linear unbiased estimate of μ .

- Prove Theorem 1.3.9 or Theorem 1.3.10 (choose one of them);
- Suppose X₁,..., X_n are i.i.d. N(μ, μ²), μ > 0. Therefore, X
 _n and S_n are both reasonable estimates of μ. Find the limit of P(|S_n − μ| < |X
 _n − μ|);
- Consider n observations {(x_i, y_i)}ⁿ_{i=1} from the simple linear regression model y_i = β₀ + β₁x_i + ε_i, where ε_i's are iid with mean 0 and unknown variance σ² < ∞ (but are not necessarily normally distributed). Assume x_i is equally spaced in the design interval [0, 1], say x_i = ⁱ/_n. We are interested in testing the null hypothesis H₀ : β₀ = 0 versus H₁ : β₀ ≠ 0. Please provide a proper test statistic based on the least squares estimate and find the critical value such that the asymptotic level of the test is α.